
Muon Emittance Exchange with a Potato Slicer

D. J. Summers, T. L. Hart, J. G. Acosta, L. M. Cremaldi,
S. J. Oliveros, and L. P. Perera

University of Mississippi - Oxford, University, MS 38677 USA

D. V. Neuffer
Fermilab, Batavia, IL 60510 USA

MAP-DOC - 4405, Apr 2015

Abstract

We propose a novel scheme for final muon ionization cooling with quadrupole doublets
followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon
collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide
the strong focusing required for final cooling. Each quadrupole doublet has a low beta region
occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal,
and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025,
70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest
angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa
efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter
long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch
train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation
period. A linear long wavelength RF bucket gives each bunch a different energy causing the
bunches to drift in the ring until they merge into one bunch and can be captured in a short
wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87%.

Introduction

Due to s-channel production, a muon collider [1] may be ideal for the examination of H/A
Higgs scalars which could be at the 1.5 TeV/c 2 mass scale and are required in supersymmetric

Table 1: Helical and Rectilinear Cooling Channel normalized 6D emittances from simulations
and the normalized 6D emittance needed for muon collider. The channels cool by over five
orders of magnitude and need less than a factor of 10 more for a muon collider. The 21
bunches present after phase rotation are also merged into one bunch during the 6D cooling.

ǫx (mm) ǫy (mm) ǫz (mm) ǫ6D (mm3) Ref.

Emittance after Phase Rotation 48.6 48.6 17.0 40,200 [4]

Helical Cooling Channel 0.523 0.523 1.54 0.421 [3]

Rectlinear Cooling Channel 0.28 0.28 1.57 0.123 [4]

Muon Collider 0.025 0.025 70 0.044 [1]

1

Table 2: Rectilinear cooling channel final cell beta function [5]. p = 204 MeV/c, β γ = p/mc

= 204/105.7 = 1.93, ǫN
x,y = 0.280mm, σx,y =

√

βx,y ǫN
x,y/(β γ), and θx,y =

√

ǫN
x,y/(βx,y β γ).

A bore diameter of 8 x 7.86mm = 62.9mm contains ±4 σx,y when βx,y = 42.64 cm. The
regions where β is near 3 cm are short.

z(m) 0.000 0.016 0.030 0.092 0.183 0.402 0.625 0.717 0.779 0.793 0.806

βx,y(cm) 3.08 3.93 5.92 26.16 42.64 33.75 42.64 26.16 5.92 3.93 3.10

σx,y(mm) 2.11 2.39 2.93 6.16 7.86 7.00 7.86 6.16 2.93 2.39 2.12

θx,y(mrad) 68.6 60.7 49.5 23.5 18.4 20.7 18.4 23.5 49.5 60.7 68.4

models [2]. But what is the status of muon cooling? As noted in Table 1, more than five
orders of magnitude of muon cooling have been shown in two simulated designs [3, 4] but
not quite the six orders of magnitude needed for a high luminosity muon collider. Also as
noted in Table 1, some of the longitudinal cooling needs to be exchanged for lower transverse
emittance.

The breakdown of RF cavities operating in strong magnetic fields is an issue [6]. The
Helical Cooling Channel inhibits breakdown with high pressure hydrogen [7]. Hydrogen at
moderate pressures, lower than those used in interstate natural gas pipelines, may work for
the Rectilinear Cooling Channel [8]. As seen in Table 2, the Rectlinear Cooling Channel
does have some high β regions, but these only cause minimal heating if hydrogen pressure
is modest [9].

An infinite solenoid [10] with a 14 Tesla magnetic field and a 200 MeV/c muon beam gives
a betatron function of β⊥ = 2 p/(3.0B) = 2(200 MeV/c)/[3.0 (14 T)] = 9.5 cm. As noted in
Table 2, the short solenoids in the final stage of the Rectilinear Cooling Channel give a

Table 3: Muon equilibrium emittance at 200 MeV/c (KE = 121 MeV, β = v/c = 0.88)
for hydrogen gas, lithium hydride, beryllium, boron carbide, diamond, and beryllium ox-
ide [12, 13]. ǫ⊥ = β∗E 2

s /(2gx β mµc 2(dE/ds)LR), where β∗ twiss is 1 cm, Es is 13.6 MeV, the
transverse damping partition number, gx is one with parallel absorber faces, mµc

2 is 105.7
MeV, and LR is radiation length.

Material Density LR dE/ds ǫ⊥ (equilibrium)

g/cm3 cm MeV/cm mm- rad

H2 gas 0.000084 750,000 0.00037 0.036

LiH 0.82 97 1.73 0.059

Be 1.85 35.3 3.24 0.087

B4C 2.52 19.9 4.57 0.109

Diamond 3.52 12.1 6.70 0.123

BeO 3.01 13.7 5.51 0.132

2

betatron function of 3.1 cm which is used with lithium hydride. To possibly get to the lower
betatron values of about 1 cm needed by a muon collider for final cooling [11], quadrupole
doublet cells are explored in Appendix Z. Table 3 gives transverse equilibrium emittances
for a number of low Z materials, particularly those with high densities.

Round to Flat Beam Transformation
Assume that a muon beam with a normalized transverse emittance of 0.100mm is avail-

able. Further assume that the beam has some modest and smooth residual angular mo-
mentum coming out of a 6D cooling channel. The beam does pick up canonical angular
momentum as it passes though absorbers in solenoids.

First, a round spinning muon beam with angular momentum is transformed to a flat
non-spinning beam with a skew quadrupole triplet [14] as shown in Fig. 1. This should make
slicing easier. The x to y emittance ratio of the flat beam is (

√
ǫ2 + L2 +L)/(

√
ǫ2 + L2 −L),

where ǫ is the intrinsic normalized transverse emittance, L = eB σ 2
x,y /2mc is the quadrature

emittance contribution of the canonical angular momentum, B is the solenoidal field strength
that the beam is exiting, and σx,y is the round beam radius. L is chosen to give an emittance
ratio of 16 for a beam with new nominal transverse normalized emittances of 0.0264mm and
0.4206mm. The muon momentum is 200± 10 MeV/c. Higher momentum spreads dilute
performance, but beam preconditioning may help [15].

Slice the Flat Beam with 16 Septa

Slice [16] the flat muon beam into 17 pieces. The slice width is chosen to give a horizontal
emittance of 0.025 mm-rad and includes 91% of the muons; 9% of the muons are in the tails
and lost. A w = 0.1mm wide electrostatic septa was used with 98% efficiency at the Fermilab
Tevatron fixed target program for multiturn extraction. At the Tevatron the fractional loss
was given by

Figure 1: A round, spinning 200±10 MeV/c muon beam with a normalized transverse
emittance of 0.100mm is transformed to a flat, non-spinning muon beam with new nor-
malized transverse emittances of 0.0264mm and 0.4206mm [14]. Inside the 2.5T solenoid
σx,y = 7.5mm. The skew quadrupole pole tip fields and focal lengths are (0.77, 0.45, 0.12)T
and (0.259, -0.369, 1.073)m, respectively. The calculated thin quadrupole parameters must
be adjusted somewhat to make finite length quadrupoles work properly. Fringe fields are
included (see Appendix A). The simulation was done with ICOOL [17].

3

4
√

2 w

xmax

√

βs/β0

=
4
√

2 × 0.1 mm

20 mm
√

2.3
= 0.02, (1)

where xmax is the beam size with the usual β 0 of the lattice and a larger β⊥ function, βs,
is used in the extraction region to make the beam bigger. The physical width of the muon
beam is

√

ǫN,x βx

β γ
=

√

√

√

√

(0.4206 mm)(1, 000 mm)

(0.93)(2.72)
= 13 mm, (2)

giving a modest 3% slicing loss. The geometrical width of the beam needs to be much larger
than the width of the electrostatic septa for efficient slicing.

Create a 3.7 m long bunch train with RF deflector cavities

Combine 17 bunches into a 3.7 m long train with RF deflector cavities as used in CLIC
tests. Each cavity interleaves two or three bunch trains. Deflection is 4.5 mrad or zero at 300
MeV/c [18]. The final train has a 231 mm bunch spacing for acceleration by 1300 MHz RF
cavities (see Table 4). Estimate the required kick [19] to inject a 300 MeV/c (γβ = 300/105.7
= 2.84) beam with a normalized emittance of 0.025 mm-rad and a β∗ of 8000mm. The kick

must be 4x greater than the rms divergence of the beam or 4
√

ǫ/(γββ∗) = 4.2 mrad, which

matches CLIC. The ± 4σ beam diameter is 8
√

ǫβ∗/(γβ) = 67mm.

Snap bunch coalesce a train of 17 bunch into one in a ring

Finally, snap bunch coalescing with RF is used to combine the 17 muon bunches lon-
gitudinally. In snap bunch coalescing, all bunches are partially rotated over a quarter of
a synchrotron period in energy-time space with a linear long wavelength RF bucket and
then the bunches drift in a ring until they merge into one bunch and can be captured in a
short wavelength RF bucket. The bunches drift together because they each have a different
energy set to cause the drift. Snap bunch coalescing replaced adiabatic bunch coalescing

Table 4: Combine 17 bunches into a 3.7m long train with 10 RF Deflector Cavities. Each
cavity interleaves two or three bunch trains. Deflection is ±4.5mrad or zero at 300 MeV/c.
The final train has a 231mm bunch spacing for acceleration by 1300MHz RF cavities.

Number Number of RF RF Output Output

Tier of Trains RF Deflector Frequency Wavelength Spacing in Bunch

Interleaving Cavities MHz Wavelengths Spacing

1 17 → 6 6 (9/16)1300 = 731 410mm 9/4 923mm

2 6 → 2 3 (3/8)1300 = 487 616mm 3/4 462mm

3 2 → 1 1 (1/2)1300 = 650 462mm 1/2 231mm

4

at the Fermilab Tevatron collider program and was used for many years [20]. Sets of fifteen
bunches were combined in the Tevatron. A 21 GeV ring has been used in a simulation [21]
with ESME [22] to show the coalescing of 17 muon bunches in 55 µs. The lattice has γ t

= 5.6 [23]. The muon decay loss is 13%. The longitudinal packing fraction is as high as
87% [24]. So nominally, the initial normalized 2.5mm longitudinal emittance is increased
by a factor of 17/0.87 to become 49mm, which is less than the 70mm needed for a muon
collider.

Conclusions

Emittance exchange with a potato slicer may be able to achieve the final normalized
0.025mm transverse and 70mm longitudinal emittances needed for a high luminosity muon
collider,

L =
γ N 2f0 (D C)

4πǫx,y β ∗
=

7000 (2× 10 12)2 180, 000/s (0.062)

4π (0.0025 cm) 1.0 cm
= 1.0 × 10 34 cm−2 s−1 (3)

where L is average luminosity, N is the initial number of muons per bunch (one positive
and one negative), f0 is the collision frequency (two detectors), D C is the duty cycle with a
15Hz repetition rate, and β ∗ is the betatron function in the collision region. The initial 6D
emittance must be small enough, the potato slicer does not cool muons. The longitudinal
emittance is as large as can be tolerated by the σp/p = 10−3 chromaticity requirement [25]
of a 1.5 TeV/c 2 muon collider final focus with round 750 GeV beams, β = 0.99999999,
γ = E/mµ, and a 10mm long collision region.

ǫL,N = (σp/p) ∆z (β γ) = 10−3 10mm 7000 = 70 mm (4)

Acknowledgements

Many thanks to Yuri Alexahin, Chuck Ankenbrandt, Scott Berg, Chandra Bhat, Alex
Bogacz, Moses Chung, Mary Anne Cummings, Jean-Pierre Delahaye, Ben Freemire, Carol
Johnstone, Trey Lyons, Bob Palmer, Mark Palmer, Philippe Piot, Tom Roberts, Robert
Ryne, Hisham Sayed, Pavel Snopok, Diktys Stratakis, Mike Syphers, Yagmur Torun, and
Katsuya Yonehara for many useful conversations.

Appendix A: ICOOL solenoid and skew quadrupole triplet code

for001.dat input file

solenoid and skew-quadrupole triplet (Dec. 31, 2014)

&cont npart=1000 / ! 1000 particles

&bmt / ! beam definition

1 2 1. 1 ! 1 mu frac gaussian

0.0 0.0 0.0 0.0 0.0 0.2 ! mean: x y z px py pz

0.0075 0.0075 0.0169 0.0014088 0.0014088 0.010 ! sigmas

0 ! no beam correlations

! particle interactions

5

&ints /

! histograms: make one z histogram,

! plot Bz vs. z for one muon, delta_z = 0.00342857 m, 70 z bins, 33 indicates Bz

&nhs /

&nsc /

&nzh nzhist=1 /

1 0. 0.00342857 70 0. 0. 33

&nrh /

&nem /

&ncv /

SECTION ! start problem definition

SREGION ! define region of solenoid

0.24 1 0.001 ! length, 1 radial region, radialstep

1 0.0 0.5 ! 1 radial region, min. and max.radii

SOL

4 2.5 0.32 0.0 0.035 0 0 0 0 0 0 0 0 0 0

! sheet model, central Bz,

! sheet length, sheet offset,

! sheet radius

VAC

CBLOCK

0 0 0 0 0 0 0 0 0 0

SREGION ! define region of 1st skew-quadrupole

! with 3rd-order fringe field

0.2 1 0.001 ! length, 1 radial region, radial step

1 0.0 0.5 ! 1 radial region, min. and max. radii

SQUA

2 25.74 0.1 0 0.05 0.01 0 0 0 0 0 0 0 0 0

! dtanh model, T/m, central length,

! 0, end length, end atten

VAC

CBLOCK

0 0 0 0 0 0 0 0 0 0

SREGION ! define region of 2nd skew-quadrupole

! with 3rd-order fringe field

0.300 1 0.001 ! length, 1 radial region, radial step

1 0.0 0.5 ! 1 radial region, min. and max. radii

SQUA

2 -9.033 0.2 0 0.075 0.015 0 0 0 0 0 0 0 0 0

! dtanh model, T/m, central length,

! 0, end length, end atten

VAC

CBLOCK

0 0 0 0 0 0 0 0 0 0

OUTPUT ! for009.dat output at end of 3rd

6

! skew-quadrupole

SREGION ! define region of 3rd skew-quadrupole

! with 3rd-order fringe field

0.700 1 0.001 ! length, 1 radial region, radial step

1 0.0 1.5 ! 1 radial region, min. and max. radii

SQUA

2 1.2426 0.5 0 0.075 0.015 0 0 0 0 0 0 0 0 0

! dtanh model, T/m, central length,

! 0, end length, end atten

VAC

CBLOCK

0 0 0 0 0 0 0 0 0 0

ENDSECTION

Appendix B: G4beamline file to set skew quadrupole focal lengths

The output of Appendix B is fed into Appendix C.

* Simulate muon beam starting in solenoid coil. The beam will exit

* the solenoid with angular momentum and then continue through

* three skew-quadrupoles.

*

* The output file, in one of two formats as explained later,is the particle

* information at z = 0 mm and 80 mm past the end of a solenoid.

*

* The output necessary for the C++ program which optimizes

* skew-quadrupole triplet strengths for minimum emit_x_N is Z0.txt

*

* The output necessary for running ICOOL is for009.dat which

* must be modified as instructed and renamed for003.dat

*

* February 24, 2015

*

use TJR recommended physics routines

no stochastic processes, particle decays turned off

physics QGSP_BERT_EMX doStochastics=0 disable=Decay list=1

Tom Roberts bux fix

bug1021

sets background color to white when G4Beamline is run in visualization mode

by clicking the ’best’ button for Viewer.

g4ui when=4 "/vis/viewer/set/background 1 1 1"

7

set reference particle parameters:

reference particle is positive muon set to red in visualization,

particlecolor reference=1,0,0 mu+=1,0,0

reference referenceMomentum=200 particle=mu+ \

beamX=0.0 beamY=0.0 beamZ=-200 meanXp=0.0 meanYp=0.0 rotation=X0.0,Z0.0

set normalized emittances and magnetic emittance

e_TR_N = 100 mm-mrad and e_mag_N = 200 mm-mrad for

Bz = 2.5 T and sigma(x,y) = 7.5 mm

e_L_N = 1.6 mm

beam gaussian particle=mu+ nEvents=1000 \

beamX=0.0 beamY=0.0 beamZ=-200 meanXp=0 meanYp=0 \

sigmaX=7.5 sigmaY=7.5 sigmaZ=0 sigmaXp=0.007044 sigmaYp=0.007044 \

meanMomentum=200 sigmaP=10 meanT=0 sigmaT=0.06365 rotation=X0,Z0.0

Keep only positive muons, and set maximum time to 100 ns.

trackcuts keep=mu+ maxTime=100.0

This sets the output ntuple at z = 0 mm.

There are two choices for the output format:

1) format=root

This embeds Z0 into g4beamline.root. In this file,

the C++/Root skew-quadrupole triplet focal length optimizer can

be run from the Z0 output in g4beamline.root.

#

2) format=for009

This format is close to the beam input format necessary for ICOOL.

To use this file at in ICOOL input, the output file name, Z0.txt,

needs to be changed to for003.dat, and the file entries have to be

rearranged to the proper format. The necessary changes are

a) Change file name from Z0.txt to for003.dat

b) Remove two of the first three comments lines and write a

desired comment for the first line.

c) For 2nd line to the last line:

i) Switch the 5th and 6th columns.

ii) Remove the 13th - 20th columns.

This file has all the kinematic variables for all muons at z = 0 which is

80 mm past the end of the solenoid and at the start of the first quadrupole.

zntuple format=root z=0

This file has all the kinematic variables for all muons at z = 1100 mm which is

at the end of the third quadrupole.

zntuple format=root z=1100

8

file showing paths for 10 muons

trace nTrace=10 format=root

tracking and stepping parameters

param maxStep=0.5 SteppingVerbose=1

Define solenoid coil

coil solenoid_coil innerRadius=25 outerRadius=35 length=320 material=Vacuum \

filename=coilname.dat

Define solenoid consisting of coil and current in A/mm^2

solenoid beam_spinner current=203.15 color=0,0,1 kill=1 coilName=solenoid_coil

Define three skew-quadrupoles

genericquad quad1 ironColor=0,1,0 fieldLength=100 ironLength=100 ironRadius=40 \

apertureRadius=30 \

gradient=-(2545/100) fringe=0 kill=1

genericquad quad2 ironColor=0,1,0 fieldLength=200 ironLength=200 ironRadius=60 \

apertureRadius=50 \

gradient=-(1667/200) fringe=0 kill=1

genericquad quad3 ironColor=0,1,0 fieldLength=500 ironLength=500 \

ironRadius=110 apertureRadius=100 \

gradient=-(559/500) fringe=0 kill=1

place solenoid magnet

place beam_spinner z=-240

place three skew-quadrupoles

place quad1 x=0 y=0 z=50 rotation=Z45

place quad2 x=0 y=0 z=50+250 rotation=Z-45

place quad3 z=0 y=0 z=50+250+500 rotation=Z45

Appendix C: C++/Root code to set skew quadrupole focal lengths

Output from Appendix B is used.

#define test_cxx

#include <TH2.h>

#include <TStyle.h>

#include <TCanvas.h>

// February 24, 2015

9

// g4beamline_muons_from_solenoid_coil.txt must be run on

// G4Beamline to produce the necessary Z0.txt. input for

// this routine.

//

// Directory names must be changed as indicated in later instructions.

//

// This is a C++/Root routine which determines the best set of three

// focal lengths of skew-quadrupoles that minimizes the final

// normalized x emittance of a beam after the third quadrupole. The

// input file is Z0 embedded in g4beamline.root. This file generates

// histograms of various kinematic quantities at the ends of each of the

// three quadrupoles. The screen output shows the best set of focal

// lengths as well as other quantities.

//

// Instructions for running this routine:

// 1) Open root g4beamline.root (generated by running G4Beamline on

// g4beamline_muons_from_solenoid_coil.txt) with root.

// 2) Select Z0.txt from g4beamline.root directory tree.

// 3) Type the following commands at root prompts

// a) .L skew-quad_triplet_matrix_optimization.C [the

// name of this file which can be changed]

// b) test t

// c) t.Loop()

//

// This runs the program executing a loop and outputting text to the screen

// until the program is done.

// C++/Root declarations

class test {

public :

TTree *fChain; //!pointer to the analyzed TTree or TChain

Int_t fCurrent; //!current Tree number in a TChain

// Declaration of leaf types

Float_t x; // add comments here describing the variable

Float_t y; //

Float_t z; //

Float_t Px; //

Float_t Py; //

Float_t Pz; //

Float_t t; //

Float_t PDGid; //

10

Float_t EventID; //

Float_t TrackID; //

Float_t ParentID; //

Float_t Weight; //

// List of branches

TBranch *b_x; //!

TBranch *b_y; //!

TBranch *b_z; //!

TBranch *b_Px; //!

TBranch *b_Py; //!

TBranch *b_Pz; //!

TBranch *b_t; //!

TBranch *b_PDGid; //!

TBranch *b_EventID; //!

TBranch *b_TrackID; //!

TBranch *b_ParentID; //!

TBranch *b_Weight; //!

test(TTree *tree=0);

virtual ~test();

virtual Int_t Cut(Long64_t entry);

virtual Int_t GetEntry(Long64_t entry);

virtual Long64_t LoadTree(Long64_t entry);

virtual void Init(TTree *tree);

virtual void Loop();

virtual Bool_t Notify();

virtual void Show(Long64_t entry = -1);

};

//

// //

// The directory names must be changed to directory containing g4beamline.root. //

// //

//

test::test(TTree *tree)

{

// if parameter tree is not specified (or zero), connect the file

// used to generate this class and read the Tree.

if (tree == 0) {

TFile *f = (TFile*)gROOT->GetListOfFiles()->

FindObject

("C:/Users/Terry Hart/Documents/6D muon cooling/appendices/g4beamline.root");

if (!f) {

f =

11

new TFile

("C:/Users/Terry Hart/Documents/6D muon cooling/appendices/g4beamline.root");

f->cd

("C:/Users/Terry Hart/Documents/6D muon cooling/appendices/g4beamline.root:/NTuple");

}

tree = (TTree*)gDirectory->Get("Z0");

}

Init(tree);

}

test::~test()

{

if (!fChain) return;

delete fChain->GetCurrentFile();

}

Int_t test::GetEntry(Long64_t entry)

{

// Read contents of entry.

if (!fChain) return 0;

return fChain->GetEntry(entry);

}

Long64_t test::LoadTree(Long64_t entry)

{

// Set the environment to read one entry

if (!fChain) return -5;

Long64_t centry = fChain->LoadTree(entry);

if (centry < 0) return centry;

if (!fChain->InheritsFrom(TChain::Class())) return centry;

TChain *chain = (TChain*)fChain;

if (chain->GetTreeNumber() != fCurrent) {

fCurrent = chain->GetTreeNumber();

Notify();

}

return centry;

}

void test::Init(TTree *tree)

{

// The Init() function is called when the selector needs to initialize

// a new tree or chain. Typically here the branch addresses and branch

// pointers of the tree will be set.

// It is normally not necessary to make changes to the generated

12

// code, but the routine can be extended by the user if needed.

// Init() will be called many times when running on PROOF

// (once per file to be processed).

// Set branch addresses and branch pointers

if (!tree) return;

fChain = tree;

fCurrent = -1;

fChain->SetMakeClass(1);

fChain->SetBranchAddress("x", &x, &b_x);

fChain->SetBranchAddress("y", &y, &b_y);

fChain->SetBranchAddress("z", &z, &b_z);

fChain->SetBranchAddress("Px", &Px, &b_Px);

fChain->SetBranchAddress("Py", &Py, &b_Py);

fChain->SetBranchAddress("Pz", &Pz, &b_Pz);

fChain->SetBranchAddress("t", &t, &b_t);

fChain->SetBranchAddress("PDGid", &PDGid, &b_PDGid);

fChain->SetBranchAddress("EventID", &EventID, &b_EventID);

fChain->SetBranchAddress("TrackID", &TrackID, &b_TrackID);

fChain->SetBranchAddress("ParentID", &ParentID, &b_ParentID);

fChain->SetBranchAddress("Weight", &Weight, &b_Weight);

Notify();

}

Bool_t test::Notify()

{

// The Notify() function is called when a new file is opened. This

// can be either for a new TTree in a TChain or when when a new TTree

// is started when using PROOF. It is normally not necessary to make changes

// to the generated code, but the routine can be extended by the

// user if needed. The return value is currently not used.

return kTRUE;

}

void test::Show(Long64_t entry)

{

// Print contents of entry.

// If entry is not specified, print current entry

if (!fChain) return;

fChain->Show(entry);

}

Int_t test::Cut(Long64_t entry)

{

13

// This function may be called from Loop.

// returns 1 if entry is accepted.

// returns -1 otherwise.

return 1;

}

#endif // #ifdef test_cxx

// Code that does the loop over focal lengths determining optimum

// skew-quadrupole triplet focal lengths

void test::Loop() {

// define histograms after Q1

TH1F *h1 =new TH1F("h1","x after Q1", 100, -200, 200);

TH1F *h2 =new TH1F("h2","y after Q1", 100, -200, 200);

TH1F *h3 =new TH1F("h3","Px after Q1", 100, -100, 100);

TH1F *h4 =new TH1F("h4","Py after Q1", 100, -100, 100);

// define histograms before and after Q2

TH1F *h5 =new TH1F("h5","x before Q2", 100, -200, 200);

TH1F *h6 =new TH1F("h6","y before Q2", 100, -200, 200);

TH1F *h7 =new TH1F("h7","Px before Q2", 100, -100, 100);

TH1F *h8 =new TH1F("h8","Py before Q2", 100, -100, 100);

TH1F *h9 =new TH1F("h9","x after Q2", 100, -200, 200);

TH1F *h10 =new TH1F("h10","y after Q2", 100, -200, 200);

TH1F *h11 =new TH1F("h11","Px after Q2", 100, -100, 100);

TH1F *h12 =new TH1F("h12","Py after Q2", 100, -100, 100);

// define histograms before and after Q3

TH1F *h13 =new TH1F("h13","x before Q3", 100, -200, 200);

TH1F *h14 =new TH1F("h14","y before Q3", 100, -200, 200);

TH1F *h15 =new TH1F("h15","Px before Q3", 100, -100, 100);

TH1F *h16 =new TH1F("h16","Py before Q3", 100, -100, 100);

TH1F *h17 =new TH1F("h17","x after Q3", 100, -200, 200);

TH1F *h18 =new TH1F("h18","y after Q3", 100, -200, 200);

TH1F *h19 =new TH1F("h19","Px after Q3", 100, -100, 100);

TH1F *h20 =new TH1F("h20","Py after Q3", 100, -100, 100);

14

// define histograms after Q3, x*Px, y*Py, x’ vs. x, y’ vs. y

TH1F *h21 =new TH1F("h21","x*Px after Q3", 100, -2500, 2500);

TH1F *h22 =new TH1F("h22","y*Py after Q3", 100, -2500, 2500);

TH2F *h23 =new TH2F("h23","Px vs. x after Q3", 1000, -200, 200,

1000, -50, 50);

TH2F *h24 =new TH2F("h24","Py vs. y after Q3", 1000, -200, 200,

1000, -50, 50);

TH2F *h25 =new TH2F("h25","Py vs. x after Q3", 1000, -200, 200,

1000, -40, 40);

TH2F *h26 =new TH2F("h26","Px vs. y after Q3", 1000, -200, 200,

1000, -40, 40);

TH1F *h27 =new TH1F("h27","x*Py after Q3", 100, -400, 400);

TH1F *h28 =new TH1F("h28","y*Px after Q3", 100, -400, 400);

TH1F *h29 =new TH1F("h29","x*y after Q3", 100, -2000, 2000);

TH1F *h30 =new TH1F("h30","Py*Px after Q3", 100, -100, 100);

TH2F *h31 =new TH2F("h31","y vs. x after Q3", 1000, -280.0, 280.0,

1000, -200.00, 200.00);

TH2F *h32 =new TH2F("h32","y vs. x after Q2", 1000, -280.0, 280.0,

1000, -200.00, 200.00);

TH2F *h33 =new TH2F("h33","y vs. x after Q1", 1000, -280.0, 280.0,

1000, -200.00, 200.00);

Long64_t nentries = fChain->GetEntriesFast();

Long64_t nbytes = 0, nb = 0;

// In a ROOT session, you can do:

// Root > .L skew-quad_triplet_matrix_optimization.C

// Root > test t

// Root > t.GetEntry(12); // Fill t data members with entry number 12

// Root > t.Show(); // Show values of entry 12

// Root > t.Show(16); // Read and show values of entry 16

// Root > t.Loop(); // Loop on all entries

//

// This is the loop skeleton where:

// jentry is the global entry number in the chain

// ientry is the entry number in the current Tree

// Note that the argument to GetEntry must be:

15

// jentry for TChain::GetEntry

// ientry for TTree::GetEntry and TBranch::GetEntry

//

// To read only selected branches, Insert statements like:

// METHOD1:

// fChain->SetBranchStatus("*",0); // disable all branches

// fChain->SetBranchStatus("branchname",1); // activate branchname

// METHOD2: replace line

// fChain->GetEntry(jentry); //read all branches

//by b_branchname->GetEntry(ientry); //read only this branch

if (fChain == 0) return;

// Define constants

// L is distance between Q1 and Q2;

// M is distance between Q2 and Q3, all in mm.

float L=250;

float M=500;

// Lengths of (Q1, Q2, Q3) in mm

float L1=100;

float L2=200;

float L3=500;

cout << "quadrupole lengths: (" << L1 << "," << L2 << "," << L3 << ") mm"

<< endl;

// Set nominal focal lengths in mm

float f1_nom=259;

float f2_nom=-369;

float f3_nom=1073;

// Adjusted focal lengths of (Q1, Q2, Q3)

float f1;

float f2;

float f3;

// Pz in MeV/c

float p_z;

// x, xp, y, yp arrays

float x_array[251];

float y_array[251];

float xp_array[251];

float yp_array[251];

16

// Variables for (x,x), (x,Px), (y,y), (y,Py),

// (Px,Py), (Py,Py), (x,y), (x,Py), (y,Px), (Px,Py) matrix elements

float sum_x_x;

float sum_x_xp;

float sum_y_y;

float sum_y_yp;

float sum_xp_xp;

float sum_yp_yp;

float sum_x_y;

float sum_x_yp;

float sum_xp_y;

float sum_xp_yp;

float sum_x;

float sum_y;

float sum_xp;

float sum_yp;

float cov_x_y;

float cov_x_yp;

float cov_xp_y;

float cov_xp_yp;

// set initial values

float chisq_lowest=12345678900000.0;

float chisq_best=12345678900000.0;

float emit_x_n_lowest=234567890000.01;

float emit_y_n_lowest=34567890000.012;

float emit_x_n_best=234567890000.01;

float emit_y_n_best=34567890000.012;

float f1_best=12.34;

float f2_best=23.45;

float f3_best=34.56;

float f1_best_exn=12.34;

float f2_best_exn=23.45;

float f3_best_exn=34.56;

// (a, b, c) are indices of 3-fold loop over focal lengths

float a_best;

float b_best;

17

float c_best;

float a_best_exn;

float b_best_exn;

float c_best_exn;

// Loop over (f1, f2, f3) variations

int a;

int b;

int c;

for (a=-2; a<3; a++) {

for (b=-2; b<3; b++) {

for (c=-2; c<3; c++) {

cout << "a = " << a << "," << " b = " << b << "," << " c = " << c

<< endl;

sum_x_x = 0.0;

sum_y_y = 0.0;

sum_x_xp = 0.0;

sum_y_yp = 0.0;

sum_xp_xp = 0.0;

sum_yp_yp = 0.0;

sum_x_y = 0.0;

sum_x_yp = 0.0;

sum_xp_y = 0.0;

sum_xp_yp = 0.0;

sum_x = 0.0;

sum_y = 0.0;

sum_xp = 0.0;

sum_yp = 0.0;

// Define adjusted (f1, f2, f3) from nominal values

f1 = f1_nom*(1.0+(a/100.0));

f2 = f2_nom*(1.0+(b/100.0));

f3 = f3_nom*(1.0+(c/100.0));

cout << "f1 = " << f1 << "," << " f2 = " << f2 << "," << " f3 = "

<< f3 << endl;

// Loop over nentries

for (Long64_t jentry=0; jentry<nentries;jentry++) {

Long64_t ientry = LoadTree(jentry);

18

if (ientry < 0) break;

nb = fChain->GetEntry(jentry);

nbytes += nb;

p_z = Pz;

// Drift through 50 mm before reaching Q1

float xq1s = x + (Px/Pz)*50;

float xpq1s = Px/Pz;

float yq1s = y + (Py/Pz)*50;

float ypq1s = Py/Pz;

// Define variables for going through quadurpole

x_array[0] = xq1s;

y_array[0] = yq1s;

xp_array[0] = xpq1s;

yp_array[0] = ypq1s;

// Go through Q1 in 250 steps

int i = 0;

do {

x_array[i+1] = x_array[i] + (L1/250.0)*xp_array[i];

xp_array[i+1] = xp_array[i] + y_array[i]/(250.0*f1);

y_array[i+1] = y_array[i] + (L1/250.0)*yp_array[i];

yp_array[i+1] = yp_array[i] + x_array[i]/(250.0*f1);

i = i + 1;

} while (i < 250);

float xq1e = x_array[250];

float yq1e = y_array[250];

float xpq1e = xp_array[250];

float ypq1e = yp_array[250];

// Define Q2 variables

// Drift from end of Q1 to start of Q2

float xq2s=xq1e+(L-(L1+L2)/2)*xpq1e;

float yq2s=yq1e+(L-(L1+L2)/2)*ypq1e;

19

// Maintain track angles from end of Q1 to start of Q2

float xpq2s=xpq1e;

float ypq2s=ypq1e;

// Initialize Q2 arrays for transport thorugh Q2

x_array[0] = xq2s;

y_array[0] = yq2s;

xp_array[0] = xpq2s;

yp_array[0] = ypq2s;

// Go through Q2 in 250 steps

i = 0;

do {

x_array[i+1] = x_array[i] + (L2/250.0)*xp_array[i];

xp_array[i+1] = xp_array[i] + y_array[i]/(250.0*f2);

y_array[i+1] = y_array[i] + (L2/250.0)*yp_array[i];

yp_array[i+1] = yp_array[i] + x_array[i]/(250.0*f2);

i = i + 1;

} while (i < 250);

float xq2e = x_array[250];

float yq2e = y_array[250];

float xpq2e = xp_array[250];

float ypq2e = yp_array[250];

// Define Q3 variables

// Drift from end of Q2 to start of Q3

float xq3s=xq2e+(M-(L2+L3)/2)*xpq2e;

float yq3s=yq2e+(M-(L2+L3)/2)*ypq2e;

// Maintain track angles from end of Q2 to start of Q3

float xpq3s=xpq2e;

float ypq3s=ypq2e;

// Initialize Q3 arrays for transport through Q3

x_array[0] = xq3s;

y_array[0] = yq3s;

xp_array[0] = xpq3s;

yp_array[0] = ypq3s;

20

// Go through Q3 in 250 steps

i = 0;

do {

x_array[i+1] = x_array[i] + (L3/250.0)*xp_array[i];

xp_array[i+1] = xp_array[i] + y_array[i]/(250.0*f3);

y_array[i+1] = y_array[i] + (L3/250.0)*yp_array[i];

yp_array[i+1] = yp_array[i] + x_array[i]/(250.0*f3);

i = i + 1;

} while (i < 250);

float xq3e = x_array[250];

float yq3e = y_array[250];

float xpq3e = xp_array[250];

float ypq3e = yp_array[250];

// Drift through 100 mm after Q3

xq3e = xq3e + (xpq3e)*100;

xpq3e = xpq3e;

yq3e = yq3e + (ypq3e)*100;

ypq3e = ypq3e;

// Define mean x*Px and y*Py 100 mm after Q3

float xpxq3e=xq3e*p_z*xpq3e;

float ypyq3e=yq3e*p_z*ypq3e;

// Determine (x,x), (x,Px), (y,y), (y,Py), (Px,Px), (Py,Py),

// (x,y), (x,Py), (y,Px), (Px,Py) matrix elements

sum_x_x = sum_x_x + xq3e*xq3e;

sum_x_xp = sum_x_xp + xq3e*p_z*xpq3e;

sum_y_y = sum_y_y + yq3e*yq3e;

sum_y_yp = sum_y_yp + yq3e*p_z*ypq3e;

sum_xp_xp = sum_xp_xp + p_z*xpq3e*p_z*xpq3e;

sum_yp_yp = sum_yp_yp + p_z*ypq3e*p_z*ypq3e;

sum_x_y = sum_x_y + xq3e*yq3e;

sum_x_yp = sum_x_yp + xq3e*p_z*ypq3e;

sum_xp_y = sum_xp_y + p_z*xpq3e*yq3e;

sum_xp_yp = sum_xp_yp + p_z*xpq3e*p_z*ypq3e;

sum_x = sum_x + xq3e;

21

sum_y = sum_y + yq3e;

sum_xp = sum_xp + xpq3e;

sum_yp = sum_yp + ypq3e;

// Fill historgrams only for nominal (fQ1, fQ2, fQ3) (a == b == c == 0)

if ((a == 0)&&(b == 0)&&(c == 0)) {

// Fill Q1 histograms

h1->Fill(xq1e);

h2->Fill(yq1e);

h3->Fill(p_z*xpq1e);

h4->Fill(p_z*ypq1e);

// Fill Q2 histograms

h5->Fill(xq2s);

h6->Fill(yq2s);

h7->Fill(p_z*xpq2s);

h8->Fill(p_z*ypq2s);

h9->Fill(xq2e);

h10->Fill(yq2e);

h11->Fill(p_z*xpq2e);

h12->Fill(p_z*ypq2e);

// Fill Q3 histograms

h13->Fill(xq3s);

h14->Fill(yq3s);

h15->Fill(p_z*xpq3s);

h16->Fill(p_z*ypq3s);

h17->Fill(xq3e);

h18->Fill(yq3e);

h19->Fill(p_z*xpq3e);

h20->Fill(p_z*ypq3e);

// Fill after Q3 x*Px, y*Py, Px vs. x, Py vs. y for normalized emittance

// determinations

h21->Fill(xpxq3e);

h22->Fill(ypyq3e);

h23->Fill(xq3e,p_z*xpq3e);

22

h24->Fill(yq3e,p_z*ypq3e);

h25->Fill(xq3e,p_z*ypq3e);

h26->Fill(yq3e,p_z*xpq3e);

h27->Fill(xq3e*p_z*ypq3e);

h28->Fill(yq3e*p_z*xpq3e);

h29->Fill(xq3e*yq3e);

h30->Fill(p_z*xpq3e*p_z*ypq3e);

h31->Fill(xq3e,yq3e);

h32->Fill(xq2e,yq2e);

h33->Fill(xq1e,yq1e);

} // loop filling histograms only for

// nominal (f1, f2, f3) (a = b = c = 0)

// if (Cut(ientry) < 0) continue;

} // loop over nentries

// Determine (x,x), (x,Px), (y,y), (y,Py), (Px,Px), (Py,Py),

// (x,y), (x,y’), (x’,y), (x’,y’) matrix elements, chi-square, and

// normalized emittances

float cov_x_x;

float cov_x_xp;

float cov_y_y;

float cov_y_yp;

float cov_xp_xp;

float cov_yp_yp;

float cov_x_y;

float cov_x_yp;

float cov_xp_y;

float cov_xp_yp;

float chisq;

float emit_x_n;

float emit_y_n;

cov_x_x = (sum_x_x/(float(nentries))) -

(sum_x/(float(nentries)))*(sum_x/(float(nentries)));

cov_xp_xp = (sum_xp_xp/(float(nentries))) -

(sum_xp/(float(nentries)))*(sum_xp/(float(nentries)));

23

cov_x_xp = (sum_x_xp/(float(nentries))) -

(sum_x/(float(nentries)))*(sum_xp/(float(nentries)));

cov_yp_yp = (sum_yp_yp/(float(nentries))) -

(sum_yp/(float(nentries)))*(sum_yp/(float(nentries)));

cov_y_y = (sum_y_y/(float(nentries))) -

(sum_y/(float(nentries)))*(sum_y/(float(nentries)));

cov_y_yp = (sum_y_yp/(float(nentries))) -

(sum_y/(float(nentries)))*(sum_yp/(float(nentries)));

cov_x_y = (sum_x_y/(float(nentries))) -

(sum_x/(float(nentries)))*(sum_y/(float(nentries)));

cov_x_yp = (sum_x_yp/(float(nentries))) -

(sum_x/(float(nentries)))*(sum_yp/(float(nentries)));

cov_xp_y = (sum_xp_y/(float(nentries))) -

(sum_xp/(float(nentries)))*(sum_y/(float(nentries)));

cov_xp_yp = (sum_xp_yp/(float(nentries))) -

(sum_xp/(float(nentries)))*(sum_yp/(float(nentries)));

// Sum (x,y), (x,Py), (Px,y), (Px,Py) matrix elements to determine chi-square

chisq = cov_x_y*cov_x_y + cov_x_yp*cov_x_yp +

cov_xp_y*cov_xp_y + cov_xp_yp*cov_xp_yp;

// Determine normalized emittances in mm-mrad

emit_x_n = (1000.0/105.66)*sqrt(cov_x_x*cov_xp_xp - cov_x_xp*cov_x_xp);

emit_y_n = (1000.0/105.66)*sqrt(cov_y_y*cov_yp_yp - cov_y_yp*cov_y_yp);

if (abs(chisq) < chisq_lowest) {

chisq_lowest = abs(chisq);

emit_x_n_best = emit_x_n;

emit_y_n_best = emit_y_n;

a_best = a;

b_best = b;

c_best = c;

f1_best = f1;

f2_best = f2;

f3_best = f3;

}

if ((emit_x_n < emit_x_n_lowest)&&(emit_x_n > 0)&&(emit_y_n > 0)) {

chisq_best = abs(chisq);

emit_x_n_lowest = emit_x_n;

emit_y_n_lowest = emit_y_n;

a_best_exn = a;

b_best_exn = b;

c_best_exn = c;

24

f1_best_exn = f1;

f2_best_exn = f2;

f3_best_exn = f3;

}

cout << " cov_x_x = " << cov_x_x << endl;

cout << " cov_x_xp = " << cov_x_xp << endl;

cout << " cov_x_y = " << cov_x_y << endl;

cout << " cov_x_yp = " << cov_x_yp << endl;

cout << " cov_xp_xp = " << cov_xp_xp << endl;

cout << " cov_xp_y = " << cov_xp_y << endl;

cout << " cov_xp_yp = " << cov_xp_yp << endl;

cout << " cov_y_y = " << cov_y_y << endl;

cout << " cov_y_yp = " << cov_y_yp << endl;

cout << " cov_yp_yp = " << cov_yp_yp << endl;

cout << " emit_x_n = " << emit_x_n << " mm-mrad " << endl;

cout << " emit_y_n = " << emit_y_n << " mm-mrad " << endl;

cout << " chisq = " << chisq << endl;

cout << endl;

} // loop over f3 adjustment

} // loop over f2 adjustment

} // loop over f1 adjustment

h31->Draw();

cout << "quadrupole lengths: (" << L1 << "," << L2 << "," << L3 << ") mm"

<< endl;

cout << "best (a,b,c) for chi-square = " << "(" << a_best << "," << b_best

<< "," << c_best << ")" << endl;

cout << "lowest chisq = " << chisq_lowest << " for (f1, f2, f3) = " << "("

<< f1_best << "," << f2_best << "," << f3_best << ")" << endl;

cout << "best emit_x_n = " << emit_x_n_best

<< " mm-mrad for (f1, f2, f3) = " << "(" << f1_best << "," << f2_best

<< "," << f3_best << ")" << endl;

cout << "best emit_y_n = " << emit_y_n_best

<< " mm-mrad for (f1, f2, f3) = " << "(" << f1_best << "," << f2_best

<< "," << f3_best << ")" << endl;

cout << endl;

cout << "best (a,b,c) for emit_x_n = " << "(" << a_best_exn << ","

<< b_best_exn << "," << c_best_exn << ")" << endl;

cout << "chisq for smallest emit_x_n = " << chisq_best

25

<< " for (f1, f2, f3) = " << "(" << f1_best_exn << "," << f2_best_exn

<< "," << f3_best_exn << ")" << endl;

cout << "lowest emit_x_n = " << emit_x_n_lowest

<< " mm-mrad for (f1, f2, f3) = " << "(" << f1_best_exn << ","

<< f2_best_exn << "," << f3_best_exn << ")" << endl;

cout << "lowest emit_y_n = " << emit_y_n_lowest

<< " mm-mrad for (f1, f2, f3) = " << "(" << f1_best_exn << ","

<< f2_best_exn << "," << f3_best_exn << ")" << endl;

} // bracket for void test::Loop()

Appendix D: Skew quadrupole triplet algebra

Define magnetic normalized emittance as

ǫmag,N =
eBsolenoid σ2

(x,y)

2mc
.

Define transverse intrinsic normalized emittance as

ǫTR,int,N =
pbeam

mc
σ(x,y)σ(x′,y′) which assumes σx = σy = σ(x,y) and σx′ = σy′ = σ(x′,y′).

When exiting solenoid, (ǫx,N , ǫy,N) = (ǫTR,int,N , ǫTR,int,N) is transformed to (ǫTR,smaller,N , ǫTR,larger,N)

with ǫN,smaller =
√

ǫ2
mag,N + ǫ2

TR,int,N − ǫmag,N ≈
ǫ2
TR,int,N

2ǫmag,N
and

ǫN,larger =
√

ǫ2
mag,N + ǫ2

TR,int,N + ǫmag,N ≈ 2ǫmag,N

Define β⊥ =
2pbeam

eBsolenoid
.

fQ1 =
β⊥

√

1+
β2
⊥

L(L+M)

fQ2 =
LM

β⊥

[

1 +

√

1 +
β2
⊥

L(L+M)

]

fQ3 =
2M(L+M)

β⊥

The relationship between the quadrupole focal length and integrated magnetic field is
pbeam

efquad

=
∫ dBy

dx
dl =

∫ dBx

dt
dl ≈ Bpole

rpole
lquad

Appendix E: Skew Quadrupole Triplet for a Large Emittances.

The emittance exchange of a large 50 mm transverse emittance beam is simulated. Pa-
rameters are chosen (see Fig. 2) to give an ideal emittance ratio of 16. The actual new
nominal transverse normalized emittances are 13 mm and 295 mm. Round to flat beam
transformations may have many uses. A beam with a low emittance in one dimension might
be spread with a dipole to separate isotopes [27].

26

Figure 2: A round, spinning 5000±500 MeV/c muon beam with a normalized transverse
emittance of 50mm is transformed to a flat, non-spinning muon beam with new normalized
transverse emittances of 13mm and 295mm [14]. Inside the 12.5T solenoid σx,y = 75mm.
The skew quadrupole pole tip fields are (4.49, 2.79, 0.684)m. The calculated thin quadrupole
parameters must be adjusted somewhat to make finite length quadrupoles work properly.
The simulation was done with G4Beamline [26] for the solenoid and ICOOL [17] which works
better for quadrupoles.

Appendix F: Deflecting RF Transverse to Longitudinal Exchange

We explore the possibility of using deflecting RF cavities to transfer transverse emit-
tance to longitudinal emittance. The desired normalized emittance transfer is (ǫy,N , ǫL,N) ∼
(400, 1600) µm → (25, 25600) µm so that (ǫy,N/ǫL,N) is (decreased/increased) by a factor of
16. ǫx,N would be kept at 25 µm. Figure 3 shows a schematic diagram of a box RF deflecting
cavity. The inital muon momentum is roughly 200 ± 10 MeV/c, and the Gaussian beam
position spread in y is 30 mm. Transforming the y and longitundinal normalized emittances
by a factor of 16 with deflecting RF cavities involves increasing the beam momentum spread
16-fold to 160 MeV/c and establishing a correlation between y and the momentum. As this
treatment is very approximate, the longitudinal quantity z′ will be defined as δp/p0 so that
the following derivations may be missing a factor or two of β which is 0.884 for a 200 MeV/c
muon.

An algorithm [28] is used for determining the optics of a triplet of deflecting RF cavities
that will enact the transvere-longitudinal emittance transformation. Figure 4 shows the
layout of a triplet of RF deflecting cavities.

There are an infinite number of solutions, and section VI -A of [28] includes a solution in
which the three deflecting RF cavities are equally spaced and the normalized strength of the
first deflecting RF cavity, b, is set equal to the correlation ratio between the energy deviation
and the transverse position, ζ ≡ z′/y0 = (δp/p0)/y0. Defining the normalized strengths of
the deflecting RF cavites as k1, k2, and k3 and the distances between the deflecting RF
cavities as L:

27

Figure 3: Schematic diagram of a box deflecting RF cavity with electromagnetic fields.

Figure 4: RF deflecting cavity triplet that transforms transverse to longitudinal emittance.

28

k1 = ζ (first deflecting RF cavity)
k2 = −2ζ (second deflecting RF cavity)
k3 = 2ζ (third deflecting RF cavity)
L = 1/2ζ (distances between RF cavities)

Distances and strengths of the RF cavities will be now be worked out, which has ζ ∼
(δp/p0)/y0 ∼ (160/200)/(0.03 m) = 26.7/m. Then, L = distance between cavities = 1/(2
× 26.7/m) = 0.01875m. To capture the beam with σy = 0.03 m, the deflecting RF cavity
should be about h = total height = 0.2m tall. The longitudinal electric field in a box
deflecting RF cavity with total height h (along y) and total width w (along x) is Ez =
Ez,0sin(2πy/h)cos(πx/w).

Also, the total length, d, of deflecting RF cavites should be a fraction of the separation
between the cavities, so that we can set d = total cavity length = 0.01m. Also, d = λRF /2
so that λRF = 0.02m and fRF = 15GHz. Finally, the normalized strength, k of a deflecting
RF cavitiy is related to Ez,0 through k = (eEz,0d)/(4hp0c) where d and h are the total length
and total width of the deflecting RF cavity respectively. For d = 0.01 m and h = 0.2 m,

Ez,0 = 432,000 MV/m for the first deflecting RF cavity,

Ez,0 = -864,000 MV/m for the second deflecting RF cavity,

Ez,0 = 864,000 MV/m for the third deflecting RF cavity.

The electric fields gradients required appear to be vastly too high to perform a transverse
to longitudinal exchange for large emittances.

Appendix Z: Quadrupole Doublet Focusing for Final Muon Cooling

Figure 5: Geometry of a quadrupole triplet focusing system [29]. Each quadrupole length is
ℓ. L∗ is the distance from the interaction point to the front of the first quadrupole and a
is an additional length for magnet interconnections. f = Lf = L∗ + 2 ℓ + a is focal length.
Magnet length times gradient is proportional to beam momentum divided by focal length.

29

Figure 6: Quadrupole doublet half cell for final muon cooling with a flat beam, minimum
βx,y = 2 cm, and a 3 cm long LiH absorber. The G4beamline transmission through one half
cell is 998/1000 and the coverage for quadrupoles is at least ±3.2σ.

Figure 7: Quadrupole doublet half cell for final muon cooling with a flat beam, minimum
βx,y = 1 cm, and a 1.5 cm long beryllium absorber. The G4beamline transmission through
one half cell is 999/1000 and the coverage for quadrupoles is at least ±3.06σ.

Following Feher and Strait [29] and their paper on hadron collider final focus quadrupole
triplet design in 1996 with a β∗ of 50 cm, we look into a short quadrupole doublet for final
muon cooling with a β∗ of 1 cm. Focal lengths in x and y are not the same in the doublet. The

30

LHC inner triplet is composed of four identical 5.5m long quadrupoles as shown in Figure
5. The outer two quadrupoles are focusing in the first transverse dimension and defocusing
in the second transverse dimension. The inner two quadrupoles are focusing in the second
transverse dimension and defocusing in the first transverse dimension. Add 0.3m for trim
coils and take a quadrupole length, ℓ, of 5.8m. The focusing strength to be proportional
to the lengths of the four quadrupoles 4ℓ, times field gradient G in T/m, times focal length
(Lf = L∗ + 2ℓ + a) in meters, divided by beam momentum p in TeV/c. L∗ is the distance
from the interaction point to the front of the first quadrupole and a is additional length for
magnet interconnections. The focal length is just the distance from the interaction point to
the center of the quadrupole triplet as shown in Figures 6 and 7. The relation between β
functions and the focal length is given by βmax = b L2

f/β
∗, where b is a fudge factor equal to

1.65 for the LHC.
A short length of low Z absorber absorber is placed at the focus of each quadrupole

doublet as shown in Figures 6 and 7. Flat beams are used with the sin (2θ) quadrupole
doublets which do not exceed 14T as in the LHC Nb3Sn LARP quadrupoles [30]. Note that
β(s) = β∗ + s2/β∗. As β∗ becomes smaller, the absorber must become thinner in the beam
direction s, so one may want to employ beryllium or diamond. The fringe fields of the magnet
fall off as the cube of distance [31] and may be small enough to not cause breakdown even
in vacuum RF. The beam power of 4× 1012 800 MeV/c muons (KE = 701 MeV) arriving at
15 Hz is 6700 watts of which only a tiny fraction would heat the superconductor even in the
absence of shielding.

In summary, quadrupole doublets and dense, low Z absorbers are being examined to cool
the current outputs given either by the Helical [3] or Rectilinear [4] 6D muon cooling channels
and prepare the input for the potato slicer which reduces the normalized transverse beam
emittance to the 25µm size required by a high luminosity muon collider. A more complete
simulation of a tapered quadrupole doublet channel is in progress.

References

[1] G.Budker, Conf.Proc. C690827 (1969) 33;
A.N. Skrinsky, Morges 1971, AIP Conf. Proc. 352 (1996) 6;
D.V.Neuffer and R.B.Palmer, EPAC94, BNL - 61267;
D. J. Summers, Bull. Am.Phys. Soc. 39 (1994) 1818;
R.Palmer et al., Nucl. Phys. Proc.Suppl. 51A (1996) 61;
C.M.Ankenbrandt et al., Phys.Rev. ST Accel. Beams 2 (1999) 081001;
M.M.Alsharo’a et al., Phys.Rev. ST Accel. Beams 6 (2003) 081001;
R.B.Palmer et al., PAC07, arXiv:0711.4275.

[2] E. Eichten and A.Martin, Phys. Lett. B728 (2014) 125.

[3] C.Yoshikawa et al., IPAC -2014 -TUPME016;
Y.Derbenev and R.P. Johnson, Phys.Rev. ST Accel. Beams 8 (2005) 041002.

[4] D. Stratakis et al., IPAC -2014 -TUPME020;
D. Stratakis et al., Phys.Rev. ST Accel. Beams 18 (2015) 044201;

31

D. Stratakis and R.B.Palmer, Phys.Rev. ST Accel. Beams 18 (2015) 031003;
V.Balbekov, MAP- DOC - 4365 (2013);
D. Stratakis et al., Phys.Rev. ST Accel. Beams 16 (2013) 091001;
R.B.Palmer et al., Phys.Rev. ST Accel. Beams 8 (2005) 061003.

[5] Diktys Stratakis, private communication.

[6] A.Moretti et al., LINAC04, Conf.Proc. C0408164 (2004) 271.

[7] M.Chung et al., Phys.Rev. Lett. 111 (2013) 184802;
B. Freemire et al., IPAC -2014 -THPRI064;
D.Neuffer and K.Paul, EPAC -2006 -WEPLS012.

[8] D. Stratakis, IPAC - 2014 - TUPME024;
J.C.Gallardo and M. S. Zisman, AIP Conf. Proc. 1222 (2010) 308.

[9] K.Yonehara, “Emittance growth by gas in a hybrid channel (preliminary),”
13 Jan 2015, MAP D&S Meeting,
https://indico.fnal.gov/conferenceDisplay.py?confId=9267

[10] J. C.Gallardo et al., Snowmass 96, BNL - 52503, pp. 245 -250.

[11] H.K. Sayed, IPAC -2014 -TUPME019;
D.Neuffer, Advanced Accelerator Concepts 2014, arXiv:1502.02709;
D.Neuffer, NuFact 2014, MAP-DOC - 4403;
D.V.Neuffer et al., IPAC -2015 -TUBD2;
D. Summers et al., IPAC -2015 -TUPWI044;
D. Stratakis et al., IPAC -2015 -THPF153.

[12] David Neuffer, arXiv:1312.1266;
D.Neuffer, Nucl. Instrum.Meth. A532 (2004) 26;
David Neuffer, Part.Accel. 14 (1883) 75;
A.N. Skrinsky and V.V.Parkhomchuk, Sov. J. Part.Nucl. 12 (1981) 223.

[13] http://pdg.lbl.gov/2014/AtomicNuclearProperties/

[14] R.Brinkmann, Y.Derbenev, and K.Flöttmann, Phys.Rev. STAccel. Beams 4 (2001)
053501; B.E.Carlsten and K.E.Bishofberger, New J.Phys. 8 (2006) 286.

[15] J. Zhu, P.Piot, D.Mihalcea, and C.R.Prokop, Phys.Rev. STAccel. Beams 17 (2014)
084401.

[16] D.Edwards and M. Syphers, “An Introduction to the Physics of High Energy Acceler-
ators,” (1993) p. 126.

[17] R.C. Fernow, PAC 2005, Conf. Proc. C0505161 (2005) 2651.

[18] M.Aicheler et al., “A Multi-TeV Linear Collider Based on CLIC Technology : CLIC
Conceptual Design Report,” CERN-2012-007, p. 32;
Robert Corsini et al., Phys.Rev. ST Accel. Beams 7 (2004) 040101.

32

[19] David Neuffer, Nucl. Instrum.Meth. A503 (2003) 374;
G. Schröder, “Fast Pulsed Magnet Systems,” CERN-SL-98-17-BT (1998).

[20] I.Kourbanis, G.P. Jackson, and X. Lu, Conf. Proc. C930517 (1993) 3799;
G.W.Foster, FERMILAB -TM-1902 (1994).

[21] R.P. Johnson, C.Ankenbrandt, C.Bhat, M.Popovic, S. A.Bogacz, and Y.Derbenev,
“Muon Bunch Coalescing,” PAC07 -THPMN095.

[22] S. Stahl and J.MacLachlan, FERMILAB -TM-1650 (1990).

[23] Alex Bogacz, “Lattices for Bunch Coalescing,” Low Emittance Muon Collider Workshop,
Fermilab, 6 -10 Feb 2006, MAP-DOC - 4406,
http://map-docdb.fnal.gov:8080/cgi-bin/RetrieveFile?docid=4406.

[24] Chandra Bhat, private communication.

[25] Y.Alexahin et al., IPAC -2010, arXiv:1202.0198.

[26] T. J.Roberts et al., EPAC08, Conf. Proc. C0806233 (2008) WEPP120.

[27] P.Bertrand et al., “Flat beams and application to the mass separation of radioactive
beams,” Conf. Proc. C060626 (2006) 1687.

[28] B.E.Carlsten, K.A.Bishofberger, L.D.Duffy, S. J.Russell, R.D.Ryne, N.A.Yampol-
sky, and A. J.Dragt, “Arbitrary emittance partitioning between any two dimensions for
electron beams ,” Phys.Rev. STAccel. Beams 14 (2011) 050706.

[29] S. Feher and J. Strait, “Estimated Inner Triplet Quadrupole Length and Aperture for
Really Large Hadron Colliders of Ebeam= 30, 60 and 100TeV,” Snowmass-1996-ACC042.

[30] F.Borgnolutti et al., “Fabrication of a Second-Generation of Nb3Sn Coils for the LARP
HQ02 Quadrupole Magnet,” IEEE Trans.Appl. Supercond. 24 (2014) 4003005.

[31] C. Johnstone, M.Berz, D.Errede, and K.Makino, “Muon beam ionization cooling in a
linear quadrupole channel” (Fig. 5 on page 479), Nucl. Instrum.Meth. A519 (2004) 472.

33

